矩阵微分 ¶
Abstract
-
矩阵微分是多变量函数微分的推广,包括矩阵偏导和梯度。
-
概念巨多且繁琐(还是建议看书吧
Jacobian 矩阵与梯度矩阵 ¶
Jacobian 矩阵 ¶
- \(pq \times mn\) 维 Jacobian 矩阵
\[
D_{X}F(\mathbf{X}) \overset{def}{=}
\frac{\partial vec(F(\mathbf{X}))}{\partial (vec \mathbf{X})^\top} \in R^{pq \times mn}
\]
- 具体表达式为
\[
D_{X}F(\mathbf{X})=
\begin{bmatrix}
\frac{\partial f_{11}}{\partial (vec \mathbf{X})^\top} \\
... \\
\frac{\partial f_{p1}}{\partial (vec \mathbf{X})^\top} \\
...\\
\frac{\partial f_{1q}}{\partial (vec \mathbf{X})^\top} \\
...\\
\frac{\partial f_{pq}}{\partial (vec \mathbf{X})^\top} \\
\end{bmatrix}
=
\begin{bmatrix}
\frac{\partial f_{11}}{\partial x_{11}} & .. & \frac{\partial f_{11}}{\partial x_{m1}} & .. & \frac{\partial f_{11}}{\partial x_{1n}} & .. & \frac{\partial f_{11}}{\partial x_{mn}} \\
... & .. & ... & .. & ... & .. & ... \\
\frac{\partial f_{p1}}{\partial x_{11}} & .. & \frac{\partial f_{p1}}{\partial x_{m1}} & .. & \frac{\partial f_{p1}}{\partial x_{1n}} & .. & \frac{\partial f_{p1}}{\partial x_{mn}} \\
... & .. & ... & .. & ... & .. & ... \\
\frac{\partial f_{1q}}{\partial x_{11}} & .. & \frac{\partial f_{1q}}{\partial x_{m1}} & .. & \frac{\partial f_{1q}}{\partial x_{1n}} & .. & \frac{\partial f_{1q}}{\partial x_{mn}} \\
... & .. & ... & .. & ... & .. & ... \\
\frac{\partial f_{pq}}{\partial x_{11}} & .. & \frac{\partial f_{pq}}{\partial x_{m1}} & .. & \frac{\partial f_{pq}}{\partial x_{1n}} & .. & \frac{\partial f_{pq}}{\partial x_{mn}} \\
\end{bmatrix}
\]
梯度矩阵 ¶
- 定义梯度矩阵
\[
\nabla_\mathbf{X} f(\mathbf{X})=
\begin{bmatrix}
\frac{\partial f(\mathbf{X})}{\partial x_{11}} & ... & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\
... & ... & ... \\
\frac{\partial f(\mathbf{X})}{\partial x_{m1}} & ... & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \\
\end{bmatrix}
=
\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}
\]
- 矩阵函数的梯度矩阵是其 Jacobian 矩阵的转置:\(\nabla_\mathbf{X} F(\mathbf{X})=(D_\mathbf{X} F(\mathbf{X}))^\top\)
偏导和梯度计算 ¶
- 矩阵变元的梯度计算和标量变元的梯度计算类似,只是矩阵变元的梯度是矩阵,而标量变元的梯度是向量,都满足线性、乘积、商、链式法则
一阶实矩阵微分与 Jacobian 矩阵辨识 ¶
一阶实矩阵微分 ¶
-
矩阵微分用符号 \(d\mathbf{X}\) 表示,定义为 \(d\mathbf{X}=[dX_{ij}]_{i=1,j=1}^{m,n}\)
-
标量函数的 Jacobian 矩阵辨识
- 实值矩阵函数的 Jacobian 矩阵辨识
二阶实矩阵微分与 Hessian 矩阵辨识 ¶
Hessian 矩阵 ¶
- 实值函数 \(f(x)\) 相对于 \(m \times 1\) 实向量 \(x\) 的二阶偏导称为 Hessian 矩阵,记作 \(H[f(x)]\),定义为
\[
H[f(x)]=\frac{\partial^2 f(x)}{\partial x \partial x^\top}=\frac{\partial}{\partial x}[\frac{\partial f(x)}{\partial x^\top}] \in R^{m \times m} \\
或 \\
H[f(x)]=\frac{\partial^2 f(x)}{\partial x \partial x^\top}=
\begin{bmatrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & ... & \frac{\partial^2 f}{\partial x_1 \partial x_m} \\
... & ... & ... \\
\frac{\partial^2 f}{\partial x_m \partial x_1} & ... & \frac{\partial^2 f}{\partial x_m \partial x_m} \\
\end{bmatrix}
\in R^{m \times m}
\]
Hessian 矩阵的辨识原理 ¶
- 标量函数 \(f(x)\) 的 Hessian 矩阵辨识
- 标量函数 \(f(\mathbf{X})\) 的 Hessian 矩阵辨识
Hessian 矩阵的辨识方法 ¶
共轭梯度与复 Hessian 矩阵 ¶
最后更新:
2023年10月7日 20:01:52
创建日期: 2023年9月28日 22:28:16
创建日期: 2023年9月28日 22:28:16